Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Electronic waste recycling after floods in Jakarta and New Orleans

Due to climate change, flood-related disasters are expected to increase. Floods generate enormous amounts of waste, including electronic waste (e-waste). E-waste should be recovered not only because it can have detrimental effects on human health and the environment but also because of the valuable metals contained in it.

In this study, a system dynamics model based on current practices and waste management was established using Vensim to determine the revenue that can be generated by e-waste recycling after floods in two socio-geographic and economic contexts: Jakarta and New Orleans. At current recovery rates, the formal systems employed for recovering valuable materials would yield 8% (€58 million) and 14% (€80 million) of the potential yield for the Jakarta and New Orleans models, respectively. Moreover, the model estimated that informal e-waste recycling would yield €1.2 billion.

The model also highlighted several problems encountered in post-disaster waste management in both scenarios, such as low capacities of temporary storage sites, increased landfilling rates, low yields of recovered e-waste components, and limitations on the transportation of waste. For optimizing the recovery of valuable metals, regulations addressing e-waste must be implemented more thoroughly, and post-disaster waste management guidelines must be revised to contextually address flood disasters. When more data are available, an improved model can be established and used as a basis for policymaking to improve the infrastructure of solid waste management to optimize e-waste recovery.

PDF downloaden

Andere relevante publicaties

Re-use of soundbars

How feasible is it to give soundbars a second life? Commissioned by Stichting OPEN, Second Use investigated the re-use potential of four soundbar models, revealing insights into repairability, consumer interest, and key barriers.

Re-use van soundbars

Hoe haalbaar is het om soundbars een tweede leven te geven? In opdracht van Stichting OPEN onderzocht Second Use de potentie van re-use bij vier modellen soundbars – met inzichten over reparatiemogelijkheden, consumentengedrag en belemmeringen.

Re-use of cordless vacuum cleaners

The re-use of cordless vacuum cleaners presents interesting opportunities, but battery replacement costs pose a significant challenge. This study, conducted by Second Use on behalf of Stichting OPEN, examines the feasibility of refurbishment and identifies key improvements to extend the lifespan of these appliances.